ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Jeffrey King guides new nuclear program at Tennessee Tech
Jeffrey King
In August, the College of Engineering at Tennessee Technological University welcomed ANS member Jeffrey C. King as the founding director of its new nuclear engineering program. King, a leading force within the American Nuclear Society and a space enthusiast, is tasked with developing a new Department of Nuclear Engineering at Tennessee Tech after a more than 20-year absence of such a program at the university.
King comes to Tennessee Tech from the Colorado School of Mines, where he had been a professor of metallurgical and materials engineering for 15 years, leading the development of the nuclear science and engineering program and serving as director of the Nuclear Science and Engineering Research Center.
Ethan S. Chaleff, Nikolas Antolin, Wolfgang Windl, Thomas Blue
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 59-65
Technical Paper | doi.org/10.1080/00295450.2018.1464288
Articles are hosted by Taylor and Francis Online.
Molten salts have been proposed as coolants for numerous advanced reactor designs. It is envisioned that these reactors, both fluoride-salt–cooled high-temperature reactors and molten-salt–fueled reactors will operate at high temperatures, where the radiative heat transfer properties of the salts may be required for accurate heat transfer analysis. Experimental challenges have prevented the measurement of absorption coefficients in most salts. In an attempt to fill this gap in data, the Vienna Ab-Initio Simulation Package is used in the present research to calculate the absorption coefficient resulting from photoelectric interactions in numerous molten salts. Ab-initio molecular dynamics is used to generate the amorphous structures of a variety of salts. The pure halide salts LiF, FLiNaK, and FLiBe, are shown to be optically clear through a wide portion of the electromagnetic spectrum. Conversely, the transition metal fluoride salt KF-ZrF4 is shown to be substantially opaque. As chromium is a known impurity of concern from the corrosion of steels in reactor environments, the effect on absorption of low levels of chromium in an otherwise transparent salt is investigated and found to significantly increase absorption at relevant wavelengths.