ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Keeping up with Kewaunee
In October 2012, Dominion Energy announced it was closing the Kewaunee nuclear power plant, a two-loop 574-MWe pressurized water reactor located about 27 miles southeast of Green Bay, Wis., on the western shore of Lake Michigan. At the time, Dominion said the plant was running well, but that low wholesale electricity prices in the region made it uneconomical to continue operation of the single-unit merchant power plant.
Shaoqiu Huang, Zhiqiang Zhu, Wangli Huang, Jian He, Jie Yu
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 315-324
Technical Paper | doi.org/10.1080/00295450.2018.1460126
Articles are hosted by Taylor and Francis Online.
The vibration effect induced by acoustic pressure is one of the issues for ultrasonic Doppler velocimetry measurement in small flow channels. In this paper, the vibration effect in liquid metal lead-bismuth (PbBi) is analyzed. It is found that the vibration velocity is affected by the excitation voltage, backing layer thickness, and fluid acoustic impedance. The vibration velocity increases with excitation voltage and decreases with fluid acoustic impedance. Besides, when the thickness increases from 2 to 6 mm, the vibration velocity decreases slightly, but there are no obvious changes when the thickness is more than 6 mm. Therefore, the excitation voltage should be as low as possible, and the backing layer thickness should be more than 6 mm to minimize the vibration effect. The vibration velocity presents large fluctuation in the near field, while it decreases with the transmission distance in the far field. When the excitation voltage is 36 V, the highest vibration velocity in liquid PbBi is up to 28 mm/s in the vicinity of the transducer. Thus, it may cause relatively large deviation in the transient velocity measurement and disturb the evaluation of turbulence pulsation in small flow channels.