ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
From the pages of Nuclear News: Industry update November 2023
Here is a recap of industry happenings from the recent past:
Centrus-Oklo partnership expands
Oklo, a California-based developer of next-generation fission reactors, has expanded its partnership with Centrus Energy, a Maryland-based supplier of nuclear fuel and services. The two companies have been cooperating since 2021 on the development of Centrus’s American Centrifuge Plant in Piketon, Ohio, to produce high-assay low-enriched uranium (HALEU) fuel. According to the companies’ new memorandum of understanding, Centrus will manufacture certain components for Oklo’s Aurora “powerhouse” reactor, a fast neutron reactor designed to generate up to 15 MW of power and operate for at least 10 years without refueling. The Aurora is also designed to produce usable heat. Centrus also has agreed to purchase electricity generated by the Aurora reactors, while Oklo has agreed to purchase HALEU fuel from the Piketon facility. The facility is expected to begin fuel production before the end of the year.
A. Bousbia Salah, S. C. Ceuca, R. Puragliesi, R. Mukin, A. Grahn, S. Kliem, J. Vlassenbroeck, H. Austregesilo
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 293-314
Technical Paper | doi.org/10.1080/00295450.2018.1461517
Articles are hosted by Taylor and Francis Online.
Advanced three-dimensional (3-D) computational tools are increasingly being used to simulate complex phenomena occurring during scenarios involving operational transients and accidents in nuclear power plants. Among these scenarios, one can mention the asymmetric coolant mixing under natural-circulation flow regimes. This issue motivated some detailed experimental investigations carried out within the Organisation for Economic Co-operation and Development/Nuclear Energy Agency PKL projects. The aim was not only to assess the mixing phenomenon in the reactor pressure vessel but also to provide experimental data for computer code validations and more specifically thermal-hydraulic system codes with 3-D capabilities. In the current study, the ROCOM/PKL-3 T2.3 experimental test is assessed using, on one hand, thermal-hydraulic system codes with 3-D capabilities and, on the other hand, computational fluid dynamics computational tools. The results emphasize the capabilities and the differences among the considered computational tools as well as their suitability for such purposes.