ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Nuclear energy for maritime shipping and coastal applications
The Boston-based Deon Policy Institute has published a white paper that examines the applications of nuclear energy in the maritime sector—specifically, floating nuclear power plants and nuclear propulsion for commercial vessels. Topics covered include available technologies, preliminary cost estimates, and a status update on the regulatory framework.
Unique opportunity: The paper points out that nuclear energy has the potential to benefit the shipping industry with high energy efficiency, lower operating costs, and zero carbon emissions. The report has a special focus on Greece, a nation that controls about 20 percent of the global commercial fleet and thus has an opportunity to take a leading role in the transition to nuclear-powered shipping.
Mingjun Wang, Annalisa Manera, Victor Petrov, Suizheng Qiu, Wenxi Tian, G. H. Su
Nuclear Technology | Volume 203 | Number 2 | August 2018 | Pages 194-204
Technical Paper | doi.org/10.1080/00295450.2018.1446656
Articles are hosted by Taylor and Francis Online.
In detailed previous work by the authors, an innovative decay heat removal (DHR) system has been proposed and designed for the Integral Inherently Safe Light Water Reactor (I2S-LWR). The current paper studies the inadvertent actuation of one DHR system train during I2S-LWR normal operation due to a false signal or operator action. The RELAP5 code is used to perform a one-dimensional study, and important thermal-hydraulic characteristics, including primary loop coolant flow rate, pressure, temperature, DHR primary-side flow rate, and coolant temperature, are achieved during this transient. Then, a detailed computational fluid dynamics simulation utilizing STARCCM+ is carried out to investigate the coolant mixing characteristics in the downcomer and lower plenum and obtain the local thermal-hydraulic conditions at the reactor core inlet. It is found that as a consequence of inadvertent DHR actuation, the maximum overcooling at the reactor core inlet is about 3 K, which would not result in significant reactivity insertion. Furthermore, a more severe transient of inadvertent DHR operation with intermediate loop break is studied, and the results show that this would not lead to more significant overcooling to the I2S-LWR core compared with inadvertent DHR operation without intermediate loop break. This work is an indispensable supplement for DHR system comprehensive assessment in the I2S-LWR project.