ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
From the pages of Nuclear News: Industry update November 2023
Here is a recap of industry happenings from the recent past:
Centrus-Oklo partnership expands
Oklo, a California-based developer of next-generation fission reactors, has expanded its partnership with Centrus Energy, a Maryland-based supplier of nuclear fuel and services. The two companies have been cooperating since 2021 on the development of Centrus’s American Centrifuge Plant in Piketon, Ohio, to produce high-assay low-enriched uranium (HALEU) fuel. According to the companies’ new memorandum of understanding, Centrus will manufacture certain components for Oklo’s Aurora “powerhouse” reactor, a fast neutron reactor designed to generate up to 15 MW of power and operate for at least 10 years without refueling. The Aurora is also designed to produce usable heat. Centrus also has agreed to purchase electricity generated by the Aurora reactors, while Oklo has agreed to purchase HALEU fuel from the Piketon facility. The facility is expected to begin fuel production before the end of the year.
A. Nava Dominguez, Y. F. Rao
Nuclear Technology | Volume 203 | Number 2 | August 2018 | Pages 173-193
Technical Paper | doi.org/10.1080/00295450.2018.1442085
Articles are hosted by Taylor and Francis Online.
The Canadian Nuclear Laboratories (CNL) is developing the technologies to enable the use of thorium-based fuels in pressure tube–heavy water reactors (PT-HWRs). One of the key stages in developing the thorium-based fuels for PT-HWRs is the reactor core configuration. Currently at CNL there are 20 core configurations under investigation, which involve several types of thorium-based fuels that could be implemented in a 700-MW(electric)-class PT-HWR. Among these core configurations, four fuel bundle concepts are being considered: (1) the reference (or nominal) 37-element bundle; (2) a 37-element modified bundle, with the center element using a different fuel material; (3) a 35-element bundle; and (4) an 18-element internally cooled annular fuel bundle. This study presents the steady-state subchannel thermal-hydraulic assessment of the 20 core configurations under investigation. The hottest channel approach is used in this study, as it represents the upper limit of a feasible design. The axial and element power distributions used in the analysis correspond to those of the discharge burnup. Three mass flows are considered in this study: 13.5, 21, and 24 kg/s. Five parameters are used to evaluate the fuel channel/bundle performance, namely, minimum critical heat flux ratio, channel pressure drop, enthalpy distribution, void fraction, and core power.