ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
LLNL offers tools to model the economics of inertial fusion power plants
Lawrence Livermore National Laboratory has designed a model to help assess the economic impact of future fusion power plant operations—specifically, the operation of inertial fusion energy (IFE) power plants. Further, it has made its Generalized Economics Model (GEM) for Fusion Technology—an Excel spreadsheet—available for download.
Junfeng Li, Shuting Zhuang, Liang Wang, Jianlong Wang
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 101-107
Technical Note | doi.org/10.1080/00295450.2018.1432838
Articles are hosted by Taylor and Francis Online.
A disk tubular reverse osmosis (DTRO) membrane system was designed and applied for the treatment of radioactive wastewater produced in a high-temperature gas-cooled reactor (HTGR) in pilot scale. The pretreatment system was simplified using a cartridge filter. A three-stage membrane system was researched and developed. The performance of the DTRO system was examined using surrogate wastewater. The volume reduction factor of the system reached 50, and the decontamination factor reached 5760. The membrane system was designed to operate at high flows. When wastewater was pumped into the membrane system, the high-speed flow of the influent prevented the fouling of the membrane. The operational performance to treat low- and intermediate-level radioactive wastewater was examined. The membrane system can be used to treat the wastewater from HTGR.