ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Junfeng Li, Shuting Zhuang, Liang Wang, Jianlong Wang
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 101-107
Technical Note | doi.org/10.1080/00295450.2018.1432838
Articles are hosted by Taylor and Francis Online.
A disk tubular reverse osmosis (DTRO) membrane system was designed and applied for the treatment of radioactive wastewater produced in a high-temperature gas-cooled reactor (HTGR) in pilot scale. The pretreatment system was simplified using a cartridge filter. A three-stage membrane system was researched and developed. The performance of the DTRO system was examined using surrogate wastewater. The volume reduction factor of the system reached 50, and the decontamination factor reached 5760. The membrane system was designed to operate at high flows. When wastewater was pumped into the membrane system, the high-speed flow of the influent prevented the fouling of the membrane. The operational performance to treat low- and intermediate-level radioactive wastewater was examined. The membrane system can be used to treat the wastewater from HTGR.