ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
From the pages of Nuclear News: Industry update November 2023
Here is a recap of industry happenings from the recent past:
Centrus-Oklo partnership expands
Oklo, a California-based developer of next-generation fission reactors, has expanded its partnership with Centrus Energy, a Maryland-based supplier of nuclear fuel and services. The two companies have been cooperating since 2021 on the development of Centrus’s American Centrifuge Plant in Piketon, Ohio, to produce high-assay low-enriched uranium (HALEU) fuel. According to the companies’ new memorandum of understanding, Centrus will manufacture certain components for Oklo’s Aurora “powerhouse” reactor, a fast neutron reactor designed to generate up to 15 MW of power and operate for at least 10 years without refueling. The Aurora is also designed to produce usable heat. Centrus also has agreed to purchase electricity generated by the Aurora reactors, while Oklo has agreed to purchase HALEU fuel from the Piketon facility. The facility is expected to begin fuel production before the end of the year.
Mélany Gouëllo, Jouni Hokkinen, Teemu Kärkelä, Ari Auvinen
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 66-84
Technical Paper | doi.org/10.1080/00295450.2018.1429111
Articles are hosted by Taylor and Francis Online.
This work is a contribution toward understanding the chemical reactions on the primary circuit surfaces involving gaseous iodine release during a severe nuclear reactor accident. Cesium iodide was used as a nonradioactive precursor material in order to highlight the effects of carrier gas composition (Ar/H2O, Ar/H2O/H2, and Ar/Air), temperature, the initial cesium/iodine (Cs/I) molar ratio by adding cesium hydroxide, and the presence of boron on the molar composition of the deposited iodine compound and on the release of gaseous iodine from the deposit. The results from the experiments involving only cesium iodide as a precursor revealed a slight decomposition of cesium iodide and a release of gaseous iodine. Furthermore, the measured gaseous iodine mass decreased with the addition of hydrogen to the carrier gas at 650°C. At 400°C, the amount of released material (aerosol and gas) was decreased. However, whereas at 650°C the sampled iodine existed mainly as aerosols, the mass concentration recorded from the experiment at 400°C indicated a predominance of gaseous iodine. When the initial Cs/I molar ratio was significantly greater than unity (1.5 < Cs/I < 4.5), the mass of produced gaseous iodine was barely detectable, suggesting a reaction between cesium hydroxide and the gaseous iodine released from cesium iodide decomposition. In the presence of boron, the transport of gaseous iodine was increased as a result of the formation of glassy cesium borate in the evaporation crucible. The presence of steam and its quantity were shown to have an enhancing influence on the cesium borate formation and on the release of gaseous iodine.