ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Nitendra Singh, Arun K. Nayak, Parimal P. Kulkarni
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 17-33
Technical Paper | doi.org/10.1080/00295450.2018.1426961
Articles are hosted by Taylor and Francis Online.
The nuclear accident at Fukushima has brought an increased research focus on nuclear safety and severe accidents. Radioactivity leakage into the environment has environmental, societal, and political impact, and further robustness of nuclear reactor design is essential. Thus, coolability and stabilization of corium within reactor containment in a severe accident scenario are important issues that need to be resolved. In this context, many new reactors have been envisaged with dedicated core catchers. In ex-vessel core catchers, corium coolability is one of the biggest concerns. Despite several efforts, melt pool coolability still needs to be understood in sufficient detail. Among the various cooling strategies, melt coolability using bottom flooding has been demonstrated to be one of the most efficient techniques so far. This paper presents the numerical and experimental study of melt pool coolability under bottom flooding with decay heat simulation. An experiment has been performed using a test section consisting of two parts: a lower part for melt retention and quenching, and an upper part for steam expansion and its outlet. To simulate the decay heat, ten radiative heaters equivalent to 10 kW were used to heat the lower part of the test section housing the melt. The experimental measurements showed that quenching of about 25 L of melt at 1200°C initial temperature took only a few minutes. The same phenomenon has been modeled using a mechanistic model. The model considers heat transfer in the melt pool, eruption in the melt pool by steam formed when water is injected at the bottom of the melt pool, and heat transfer from porous debris to a steam mixture. The model postulates the formation of crust below the melt pool when water is being inserted from the bottom. The model predicts the failure of this crust due to various stresses, resulting in an inverted cone–shaped melt eruption. The model captures the physics of this eruption cone along with the spatial variation in porosity. The model predictions have been compared with the measurements for the melt pool temperature during the cooling process. The results show that the model is able to capture quite accurately the multidimensional temperature fields in the melt pool during the cooling process.