ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
From the pages of Nuclear News: Industry update November 2023
Here is a recap of industry happenings from the recent past:
Centrus-Oklo partnership expands
Oklo, a California-based developer of next-generation fission reactors, has expanded its partnership with Centrus Energy, a Maryland-based supplier of nuclear fuel and services. The two companies have been cooperating since 2021 on the development of Centrus’s American Centrifuge Plant in Piketon, Ohio, to produce high-assay low-enriched uranium (HALEU) fuel. According to the companies’ new memorandum of understanding, Centrus will manufacture certain components for Oklo’s Aurora “powerhouse” reactor, a fast neutron reactor designed to generate up to 15 MW of power and operate for at least 10 years without refueling. The Aurora is also designed to produce usable heat. Centrus also has agreed to purchase electricity generated by the Aurora reactors, while Oklo has agreed to purchase HALEU fuel from the Piketon facility. The facility is expected to begin fuel production before the end of the year.
Jung-Woo Kim, Dong-Keun Cho, Nak-Youl Ko, Jongtae Jeong, Min-Hoon Baik
Nuclear Technology | Volume 203 | Number 1 | July 2018 | Pages 1-16
Technical Paper | doi.org/10.1080/00295450.2018.1426331
Articles are hosted by Taylor and Francis Online.
New methodology for a risk-based safety assessment of a geological disposal system of nuclear waste was implemented using the numerical Korea Atomic Energy Research Institute (KAERI) Performance Assessment Model (K-PAM). K-PAM was applied to a conceptual geological disposal system for pyroprocessed radioactive wastes based on the KAERI Underground Research Tunnel (KURT) site. The methodology was systematically organized for model development considering two types of external events: earthquakes and well intrusion. Following description of its conceptual models and submodules, K-PAM was partially verified by comparing the consequences of two major modules of K-PAM—engineered barrier system and natural barrier system—with those by a well-known, comparable process model using COMSOL. In addition, K-PAM was demonstrated using three scenarios: (1) the reference scenario, in which the normal consequences of the disposal system without external events could be predicted; (2) the deterministic complex scenario, in which the impacts of individual external events on the disposal system could be estimated separately; and (3) the probabilistic complex scenario, in which the efficiency of the new methodology for a risk-based safety assessment could be confirmed numerically by showing the probable maximum dose rate according to any single scenario, the convergence of risk, the dominant impacts contributing to the maximum dose rate, and the probability of occurrence of the scenario groups.