ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Casey Kovesdi, Zachary Spielman, Katya LeBlanc, Brandon Rice
Nuclear Technology | Volume 202 | Number 2 | May-June 2018 | Pages 220-229
Technical Paper | doi.org/10.1080/00295450.2018.1455461
Articles are hosted by Taylor and Francis Online.
An important element of human factors engineering (HFE) pertains to measurement and evaluation (M&E). The role of HFE-M&E should be integrated throughout the entire control room modernization (CRM) process and be used for human–system performance evaluation and diagnostic purposes to resolve potential human engineering deficiencies and other human–machine interface design issues. NUREG-0711 describes how HFE in CRM should employ a hierarchical set of measures, particularly during integrated system validation, including plant performance, personnel task performance, situation awareness, cognitive workload, and anthropometric/physiological factors. Historically, subjective measures have been primarily used since they are easier to collect and do not require specialized equipment. However, there are pitfalls with relying solely on subjective measures in M&E such as negatively impacting reliability, sensitivity, and objectivity. As part of comprehensively capturing a diverse set of measures that strengthen findings and inferences made about the benefits from emerging technologies like advanced displays, this paper discusses the value of using eye tracking as an objective method that can be used in M&E. A brief description of eye tracking technology and relevant eye tracking measures is provided. Additionally, technical considerations and the unique challenges with using eye tracking in full-scale simulations are addressed. Finally, this paper shares preliminary findings regarding the use of a wearable eye tracking system in a full–scale simulator study. These findings should help guide future full–scale simulator studies using eye tracking as a methodology to evaluate human-system performance.