ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Prathamesh N. Bilgunde, Leonard J. Bond
Nuclear Technology | Volume 202 | Number 2 | May-June 2018 | Pages 161-172
Technical Paper | doi.org/10.1080/00295450.2017.1419782
Articles are hosted by Taylor and Francis Online.
Advanced piezoelectric-based ultrasonic transducers offer the potential for in-coolant nondestructive testing (NDT) measurements at high temperatures (HTs), including during hot standby (~260°C) for liquid-sodium–cooled advanced small modular reactors. The reliability of the NDT measurements is typically quantified by the probability of detection (POD) measured at the corresponding temperature. Obtaining such data in liquid sodium is challenging. Using a model-assisted POD approach, a transfer function is reported that enables data obtained on low carbon steel specimens at room temperature to give an estimated POD at an HT. A primary source of the difference in POD between room temperature and HT is due to the transducer material temperature-dependent performance. This paper demonstrates the transfer function approach using data for modified lead zirconium titanate (PZT-5A). A physics-based model was developed using a finite element method and used to quantify reduction in the scattering amplitude for standard reflectors, side drilled holes (SDHs), for a range of sizes, from 15°C to 195°C. Scattering amplitudes for the room-temperature–simulated data are compared with the experimental data measured at 2.25 MHz. A temperature correction and transfer functions were developed to transform the simulated temperature effect in the physics-based model to compare with the experimental data. The model-based approach was validated with experimental data. It was seen and validated for a PZT-5A ultrasonic transducer operating at 2.25 MHz that the 95% POD at 15°C was 0.58 λ, and due to variation in temperature-dependent properties of PZT-5A, the 95% POD was achieved only for a 1.41 λ SDH diameter.