ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
January 2024
Latest News
Eisenhower’s “Atoms for Peace” at 70
Seventy years ago to the day, President Dwight D. Eisenhower gave his historic address to the United Nations General Assembly in New York City. (See December 2023 Nuclear News's “Leaders” column to read the reflections of Kathryn Huff, the Department of Energy’s assistant secretary for nuclear energy, on the speech’s anniversary.)
Shawkat S. Khairullah, Carl R. Elks
Nuclear Technology | Volume 202 | Number 2 | May-June 2018 | Pages 141-152
Technical Paper | doi.org/10.1080/00295450.2018.1450014
Articles are hosted by Taylor and Francis Online.
One of the essential concepts being postulated for next generation nuclear power plants (NPPs) that could include Gen IV reactors—small modular reactors—is the notion of resilient and survivable instrumentation and control (I&C) systems. Resilience at the system and plant level will rely on highly robust and fault-tolerant digital embedded devices as a foundation. This paper presents a new self-healing programmable digital I&C architecture, BioSymPLe, inspired from the way nature responds, defends, and heals: the stem cells in the immune system of living organisms and the pathway from DNA to protein. The BioSymPLe is organized in a four-layered approach: (1) cellular layer that includes four sublayers, with each sublayer allocating two functional B cells which represent the building block that executes the local functionality of NPP critical application based on the expression for DNA genetic codes stored inside each cell; (2) tissue layer that embeds eight redundant T cells and eight routing units to facilitate coordination and organized behavior among a network of four cellular sublayers; (3) internal healing layer that monitors the correct execution of functions at the cellular level and activates healing mechanism at the tissue level; and (4) external healing layer using a concept of embryonic stem cells by differentiating this type of cell to repair the faulty T cells. Finally, the BioSymPLe is capable of tolerating a significant number of faults (transient, permanent, or hardware common cause failures) that can stem from environmental disturbances, and we believe it can positively impact the operation of next generation digital I&C systems in NPPs.