ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Xiaoxu Diao, Yunfei Zhao, Mike Pietrykowski, Zhuoer Wang, Shannon Bragg-Sitton, Carol Smidts
Nuclear Technology | Volume 202 | Number 2 | May-June 2018 | Pages 106-123
Technical Paper | doi.org/10.1080/00295450.2018.1426963
Articles are hosted by Taylor and Francis Online.
This paper studies the propagation and effects of faults in critical components that pertain to the secondary loop of a nuclear power plant found in nuclear hybrid energy systems (NHESs). This information is used to design an online monitoring (OLM) system that is capable of detecting and analyzing faults that are likely to occur during NHES operation. In this research, the causes, features, and effects of possible faults are investigated by simulating the propagation of faults in the secondary loop of a nuclear power plant. The simulation is conducted using Integrated System Failure Analysis (ISFA), a promising method analyzing hardware and software faults during the conceptual design phase. First, the models of system components required by ISFA are constructed. Then, fault propagation analysis is implemented, which is conducted under the bounds set by acceptance criteria derived for the design of an OLM system. The result of the fault simulation is utilized to evaluate the effectiveness of signals for fault detection and diagnosis and to propose an optimization plan for the OLM system. Finally, several experiments are designed and conducted using a hardware-in-the-loop system to verify the correctness and effectiveness of the proposed method.