ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Hiral Kadakia, Andrew Baker, Mark Paulsen
Nuclear Technology | Volume 202 | Number 1 | April 2018 | Pages 71-80
Technical Paper | doi.org/10.1080/00295450.2017.1419785
Articles are hosted by Taylor and Francis Online.
RETRAN-3D is a versatile and reliable best-estimate five-equation thermal-hydraulic analysis code used for anticipated operational occurrences and for small-break loss-of-coolant accidents transient analysis of light water reactor systems. The RETRAN-3D accumulator model has been revised to predict behavior during short-intermediate and long-term transients in pressurized water reactors. The accumulator is a single-volume, two-region nonequilibrium component model that includes vessel geometry, wall metal mass, and wall and liquid region surface areas as a function of level. The model accounts for heat transfer effects from the vessel wall to the vapor region using a lumped parameter model and accounts for heat transfer from the liquid region to the gas region. Mass and energy balance equations are solved for the liquid region, and an energy equation is solved for the vapor region. A pressure equation of state provides the pressure as a function of the mass and energy of the liquid and vapor regions.
The new model is validated with loss-of-fluid test and semiscale experimental data, demonstrating that the model is capable of predicting the behavior of an accumulator for transients ranging from short term to long term and accounts for the effects of accumulator geometry such as surface area-to-volume ratio.