ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Vikram Singh, Matthew R. Lish, Alexander M. Wheeler, Ondřej Chvála, Belle R. Upadhyaya
Nuclear Technology | Volume 202 | Number 1 | April 2018 | Pages 15-38
Technical Paper | doi.org/10.1080/00295450.2017.1416879
Articles are hosted by Taylor and Francis Online.
A nonlinear dynamic model for the two-fluid molten-salt breeder reactor (MSBR) system is presented. This work is partly inspired by a preliminary dynamic model of the concept studied at Oak Ridge National Laboratory (ORNL). The core heat transfer model has been revised to accurately reflect the design exemplified in ORNL-4528—the last report on the two-fluid design. A brief description of the reactor system and the effects of reactor poisons and a discussion of temperature feedback mechanisms are presented. This background information is followed by an overview of the modeling approach and a discussion of the revised lumped parametrization, along with detailed descriptions of the modeling methodology and model limitations. All equations and parameters used in the model are presented to aid in model reproduction and adaptation for other molten-salt reactor designs. Model stability is analyzed by observing the uncontrolled response to reactivity perturbations. Simulations illustrate stable behavior at all power levels investigated. Temperature-induced feedback effects lead to stable dynamics for both large and small reactivity transients. Stable and smooth changes in the various nodal temperatures are also observed. The frequency response of the system indicates no dynamics problems at all operating power levels and is consistent with the transient response. Characteristic features in the frequency response plots due to feedback effects are also discussed. Finally, the load-following capability of the MSBR system is studied for various ramp rates of the power demand in the final heat sink. The temperatures in all salt-containing parts of the system are observed to vary about an average during the load-following maneuver. It is observed that the MSBR system exhibits a self-regulating behavior, minimizing the need for external controller action for load-following operations.