This paper examines the concept of Grid resilience in the context of the North American electricity supply system and the role existing (Generation II) light water–cooled nuclear power plants (NPPs) play in enabling and enhancing Grid resilience. (Because of similarities in technology and plant design, it is likely that most of the discussion in the paper is also relevant to Generation III and Generation III+ light water NPP designs. The applicability of the analysis to Canadian CANDU and Russian VVER technology has not been assessed.) The paper asks and answers three compound questions: (1) what is Grid resilience, and what is a resilient Grid? (2) what is a resilient nuclear power plant (rNPP), and what are the basic functional requirements of rNPPs? and in light of the answers to these questions, (3) are today’s U.S. NPPs significant Grid resilience assets? The conclusion reached is that existing U.S. commercial NPPs are safe and efficient capacity, energy, and reliability assets and they have demonstrated some Grid resilience benefit during regional weather events. However, today’s NPPs do not deliver the Grid resilience benefits nuclear power can and should provide the nation. The author argues that nuclear power’s unique fuel security (an attribute that could allow NPPs to energize the Grid during extended periods in which fuel could not be delivered to other types of power plants) is a compelling reason to develop future rNPPs that would deliver strategic Grid resilience benefits in the face of evolving hazards and threats to the U.S. Grid.