ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Sherrell R. Greene
Nuclear Technology | Volume 202 | Number 1 | April 2018 | Pages 1-14
Technical Paper | doi.org/10.1080/00295450.2018.1432966
Articles are hosted by Taylor and Francis Online.
This paper examines the concept of Grid resilience in the context of the North American electricity supply system and the role existing (Generation II) light water–cooled nuclear power plants (NPPs) play in enabling and enhancing Grid resilience. (Because of similarities in technology and plant design, it is likely that most of the discussion in the paper is also relevant to Generation III and Generation III+ light water NPP designs. The applicability of the analysis to Canadian CANDU and Russian VVER technology has not been assessed.) The paper asks and answers three compound questions: (1) what is Grid resilience, and what is a resilient Grid? (2) what is a resilient nuclear power plant (rNPP), and what are the basic functional requirements of rNPPs? and in light of the answers to these questions, (3) are today’s U.S. NPPs significant Grid resilience assets? The conclusion reached is that existing U.S. commercial NPPs are safe and efficient capacity, energy, and reliability assets and they have demonstrated some Grid resilience benefit during regional weather events. However, today’s NPPs do not deliver the Grid resilience benefits nuclear power can and should provide the nation. The author argues that nuclear power’s unique fuel security (an attribute that could allow NPPs to energize the Grid during extended periods in which fuel could not be delivered to other types of power plants) is a compelling reason to develop future rNPPs that would deliver strategic Grid resilience benefits in the face of evolving hazards and threats to the U.S. Grid.