ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Aaron Derouin, Alice Salway
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 165-173
Technical Paper | doi.org/10.1080/00295450.2017.1413922
Articles are hosted by Taylor and Francis Online.
After the Fukushima Daiichi accident, nuclear regulators around the world have required that power reactor licensees develop more extensive emergency mitigating responses and severe accident management provisions beyond the defense-in-depth measures for design-basis accidents previously in place. Workload assessments represent common validation techniques that are used to demonstrate that workers are able to perform tasks without unacceptable performance degradation. High workload is known to induce stress and fatigue and may severely diminish a worker’s capacity to perceive, recognize, and respond appropriately during emergency or unanticipated events, which may result in undesirable consequences. In estimating workload during emergency and severe accident scenarios, power reactor licensees tend to rely on subjective measures of workload, such as the NASA Task Load Index. Because of reported mismatches in the literature between subjective and physiologically derived estimates of workload, it is prudent to see what more can be done to improve the current state of practice in the context of emergency and severe accident conditions.
To improve confidence in workload estimates, it is advocated that the nuclear industry integrate physiologically based measures into current practices by making use of on-body or wearable physiological sensors. In this paper, an overview of three different approaches to the empirical measurement of workload is provided. The advantages of wearable physiological sensors are considered in the context of extreme environments and occupations, with tangible examples including heat stress and pupillometry. Suggestions for a consensus forum on workload are provided, and a research plan directed at improving the current practice of workload estimation is offered for consideration.