ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Aaron Derouin, Alice Salway
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 165-173
Technical Paper | doi.org/10.1080/00295450.2017.1413922
Articles are hosted by Taylor and Francis Online.
After the Fukushima Daiichi accident, nuclear regulators around the world have required that power reactor licensees develop more extensive emergency mitigating responses and severe accident management provisions beyond the defense-in-depth measures for design-basis accidents previously in place. Workload assessments represent common validation techniques that are used to demonstrate that workers are able to perform tasks without unacceptable performance degradation. High workload is known to induce stress and fatigue and may severely diminish a worker’s capacity to perceive, recognize, and respond appropriately during emergency or unanticipated events, which may result in undesirable consequences. In estimating workload during emergency and severe accident scenarios, power reactor licensees tend to rely on subjective measures of workload, such as the NASA Task Load Index. Because of reported mismatches in the literature between subjective and physiologically derived estimates of workload, it is prudent to see what more can be done to improve the current state of practice in the context of emergency and severe accident conditions.
To improve confidence in workload estimates, it is advocated that the nuclear industry integrate physiologically based measures into current practices by making use of on-body or wearable physiological sensors. In this paper, an overview of three different approaches to the empirical measurement of workload is provided. The advantages of wearable physiological sensors are considered in the context of extreme environments and occupations, with tangible examples including heat stress and pupillometry. Suggestions for a consensus forum on workload are provided, and a research plan directed at improving the current practice of workload estimation is offered for consideration.