ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
October 2024
Fusion Science and Technology
Latest News
ACU gets permit to build nation’s first molten salt university research reactor
The Nuclear Regulatory Commission issued a construction permit yesterday to Abilene Christian University, giving ACU and its partners the go-ahead to build the Molten Salt Research Reactor (MSRR) facility on its Abilene, Texas, campus. The 1-MWt research reactor is the first molten salt–fueled reactor to get a construction permit from the NRC. After Kairos Power’s Hermes, it is the second non–light water reactor construction permit issued by the NRC.
Yican Wu, Mengyun Cheng, Wen Wang, Jing Song, Shengpeng Yu, Pengcheng Long, Liqin Hu
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 155-164
Technical Paper | doi.org/10.1080/00295450.2017.1411717
Articles are hosted by Taylor and Francis Online.
Dose conversion coefficients are important physical quantities in radiation dosimetry assessment and can be derived from Monte Carlo simulation based on human computational phantoms. In order to accurately evaluate the dose to a human body especially for a Chinese female, a precise whole-body Chinese female computational phantom named Rad-Human was constructed based on high-resolution digital color slice images of an adult female body. Rad-Human includes 46 tissues and organs with a minimum voxel size of 0.15 × 0.15 × 0.25 mm for head and neck and 0.15 × 0.15 × 0.5 mm for other regions, and it contains more than 28.8 billion voxels. Conversion coefficients and effective doses of external radiation, specific absorbed fractions, and S values of internal radiation for different energies for Rad-Human were calculated. The calculated dose conversion coefficients were reasonable comparing and analyzing the relationship between dose and organ characteristics with those values of the International Commission on Radiological Protection (ICRP) reference phantom. Based on the information and simulation results of Rad-Human, a set of more complete data of dose conversion coefficients in the radiation field was constructed for a Chinese adult female. Dose discrepancies that were observed were due to differences of body structures between the two phantoms. The differences of dose conversion coefficients between Rad-Human and the ICRP reference phantom demonstrate that Rad-Human can more accurately assess the exposure dose especially for a Chinese female.