ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Olivier Bardon, Ludovic Garnier
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 103-112
Technical Paper | doi.org/10.1080/00295450.2017.1409054
Articles are hosted by Taylor and Francis Online.
Used nuclear fuel transportation casks are subjected to a permanent heat load that must be released in the air by passive dissipation as natural convection and infrared radiation. Because of the large size of the cask, natural convection operates in nonisothermal conditions at very high Rayleigh numbers where few experimental works exist and where computational fluid dynamics codes are often not representative. Thermal tests are then needed to estimate and check thermal designs. This work is a starting point of a research and development program that aims to improve the knowledge of natural convective heat transfer around casks, to explain the effect of a design parameter such as fins, and finally to propose and check improved solutions. In this work, we present the qualification of a mock-up that has been set up to measure the local heat convective coefficient of a fin-equipped cask in transport conditions. The geometry concerns short axial fins that are widely used on transportation/storage casks. The first results show a large variation of the heat convective coefficient along the cask from a constant low level at the bottom and then a linearly increasing level leading to a maximum value close to the top that is strongly temperature dependent.