ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Olivier Bardon, Ludovic Garnier
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 103-112
Technical Paper | doi.org/10.1080/00295450.2017.1409054
Articles are hosted by Taylor and Francis Online.
Used nuclear fuel transportation casks are subjected to a permanent heat load that must be released in the air by passive dissipation as natural convection and infrared radiation. Because of the large size of the cask, natural convection operates in nonisothermal conditions at very high Rayleigh numbers where few experimental works exist and where computational fluid dynamics codes are often not representative. Thermal tests are then needed to estimate and check thermal designs. This work is a starting point of a research and development program that aims to improve the knowledge of natural convective heat transfer around casks, to explain the effect of a design parameter such as fins, and finally to propose and check improved solutions. In this work, we present the qualification of a mock-up that has been set up to measure the local heat convective coefficient of a fin-equipped cask in transport conditions. The geometry concerns short axial fins that are widely used on transportation/storage casks. The first results show a large variation of the heat convective coefficient along the cask from a constant low level at the bottom and then a linearly increasing level leading to a maximum value close to the top that is strongly temperature dependent.