ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
LLNL offers tools to model the economics of inertial fusion power plants
Lawrence Livermore National Laboratory has designed a model to help assess the economic impact of future fusion power plant operations—specifically, the operation of inertial fusion energy (IFE) power plants. Further, it has made its Generalized Economics Model (GEM) for Fusion Technology—an Excel spreadsheet—available for download.
Olivier Bardon, Ludovic Garnier
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 103-112
Technical Paper | doi.org/10.1080/00295450.2017.1409054
Articles are hosted by Taylor and Francis Online.
Used nuclear fuel transportation casks are subjected to a permanent heat load that must be released in the air by passive dissipation as natural convection and infrared radiation. Because of the large size of the cask, natural convection operates in nonisothermal conditions at very high Rayleigh numbers where few experimental works exist and where computational fluid dynamics codes are often not representative. Thermal tests are then needed to estimate and check thermal designs. This work is a starting point of a research and development program that aims to improve the knowledge of natural convective heat transfer around casks, to explain the effect of a design parameter such as fins, and finally to propose and check improved solutions. In this work, we present the qualification of a mock-up that has been set up to measure the local heat convective coefficient of a fin-equipped cask in transport conditions. The geometry concerns short axial fins that are widely used on transportation/storage casks. The first results show a large variation of the heat convective coefficient along the cask from a constant low level at the bottom and then a linearly increasing level leading to a maximum value close to the top that is strongly temperature dependent.