ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
Jiyoung Lee, Haseeb ur Rehman, Yonghee Kim
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 41-51
Technical Paper | doi.org/10.1080/00295450.2017.1392397
Articles are hosted by Taylor and Francis Online.
This paper evaluates the effectiveness of producing 99Mo using the photonuclear giant dipole resonance (GDR) (γ, n) reaction. The focus of the study is a novel implementation of the photonuclear transmutation method by the use of laser-Compton scattering (LCS) gamma-ray beams to produce 99Mo. The use of LCS enables the production of energetic and high-intensity gamma rays with a tunable energy spectrum based on various facility parameters (i.e., electron energy, laser energy, and collimation angle). The combination of these three features have made the use of the LCS process for the production of 99Mo using the photonuclear (γ, n) reaction a concept deserving further investigation. In this study, rigorous optimization of the LCS spectrum is performed to maximize the overlapping of the GDR cross section and the LCS spectrum to optimize the production rate and activity of the 99Mo product. Furthermore, the unique innovation of the multiple laser extraction concept is also included in this paper in order to increase the gamma-ray intensity by a factor of 10 to 20.