ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Jiyoung Lee, Haseeb ur Rehman, Yonghee Kim
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 41-51
Technical Paper | doi.org/10.1080/00295450.2017.1392397
Articles are hosted by Taylor and Francis Online.
This paper evaluates the effectiveness of producing 99Mo using the photonuclear giant dipole resonance (GDR) (γ, n) reaction. The focus of the study is a novel implementation of the photonuclear transmutation method by the use of laser-Compton scattering (LCS) gamma-ray beams to produce 99Mo. The use of LCS enables the production of energetic and high-intensity gamma rays with a tunable energy spectrum based on various facility parameters (i.e., electron energy, laser energy, and collimation angle). The combination of these three features have made the use of the LCS process for the production of 99Mo using the photonuclear (γ, n) reaction a concept deserving further investigation. In this study, rigorous optimization of the LCS spectrum is performed to maximize the overlapping of the GDR cross section and the LCS spectrum to optimize the production rate and activity of the 99Mo product. Furthermore, the unique innovation of the multiple laser extraction concept is also included in this paper in order to increase the gamma-ray intensity by a factor of 10 to 20.