ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
P. Chandramohan, M. P. Srinivasan, S. Velmurugan
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 269-277
Technical Paper | doi.org/10.1080/00295450.2017.1371561
Articles are hosted by Taylor and Francis Online.
Chromite or chromium containing oxides are formed as a protective oxide film on the stainless steel surface of heat transport systems. The chemical dissolution of these passive oxide films forms an important step in decontamination formulation development for water-cooled nuclear reactor systems. Dissolved ozone as a reagent was tested for effective chemical dissolution of Fe3+ substituted in nickel chromite and individual component oxides. The study showed the importance of the solution pH and temperature on the dissolution kinetics of Cr2O3, NiO, and NiFexCr2-xO4. Neutral water pH or 0.04 mM OH− were better for achieving a high dissolution rate for chromium containing oxides compared to acidic (2.5 mM H+) or alkaline conditions. In an acidic condition, the release of nickel from NiO or nickel chromite was more in the ozone medium compared to a high pH condition. Substitution of Fe3+ in nickel chromite affected the dissolution behavior in the ozone medium. The dissolution of Fe3+ substituted in nickel chromite showed a small increase in the dissolution rate constant with up to composition x = 0.4, and further increase in the Fe3+ composition in the oxide lattice decreased the dissolution rate constant.