ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Andrew T. Bopp, Weston M. Stacey
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 250-268
Technical Paper | doi.org/10.1080/00295450.2017.1374088
Articles are hosted by Taylor and Francis Online.
A customized dynamic safety model is developed and used to analyze the safety characteristics of the Subcritical Advanced Burner Reactor (SABR), a fast transmutation reactor driven by a tokamak fusion neutron source. Loss-of-flow accidents (LOFAs), loss–of–heat sink accidents (LOHSAs), and loss-of-power accidents (LOPAs) are analyzed taking into account the effects of feedback mechanisms, control rod insertion, and terminating electrical power to the neutron source. The core avoids fuel melting and coolant boiling without corrective action for 50% (failure of one of two pumps) loss of heat sink (LOHSA) and loss of flow (LOFA). For 100% (failure of both pumps) LOFAs, LOHSAs, and LOPAs without corrective action, coolant boiling (1156 K)/fuel melting (1473 K) occur at about 25 s/36 s, 35 s/84 s, and 25 s/36 s, respectively, after pump failure unless corrective control action is taken before this time, in which case the core power can be reduced to the decay heat level by shutting off the plasma power source. The present passive heat removal system is not sufficient to remove the decay heat, and both fuel melting and coolant boiling ultimately occur in the 100% LOFAs and LOHSAs (failure of both pumps) in either the primary or secondary system indicating the need to provide other means for decay heat removal.