ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
Nominations for national awards open for 2023 ANS Annual Meeting
Nominations for the 2023 Annual Meeting awards are now being accepted, through the deadline of March 1. Hash Hashemian, chair of the ANS Honors and Awards Committee, urged members in a letter posted online to nominate their peers: “Your nomination of highly qualified individuals is the key step in recognizing their contributions and ensuring that the ANS Honors and Awards Program is aware of their achievements.” The recipients of the national awards, listed below, will be honored at the 2023 ANS Annual Meeting in Indianapolis, Ind. Honorees will be notified of their selection by May.
Jihyeon Lee, Kwang Soon Ha, Jungho Hwang
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 241-249
Technical Paper | doi.org/10.1080/00295450.2017.1372984
Articles are hosted by Taylor and Francis Online.
Because most radioactive materials that can escape from a nuclear power plant during a severe accident are expected to be in the form of aerosols, the installation of a filtered containment venting system (FCVS) will be effective to mitigate the risks caused by radioactive aerosols. Aerosol size is a parameter important to the design requirements of an FCVS because the collection efficiency of the venting system depends on the size of the aerosol. In this study, the size distribution change of aerosols by condensation was calculated by using the moment method. Sodium chloride was used as nuclei that underwent condensational growth, and Di-Ethyl-Hexyl-Sebacate (DEHS) was used as a vapor that participated in condensational growth. Then, a condensation experiment was conducted to verify the results calculated by the moment method. However, in an actual severe accident, water vapor in the containment would condense on particles. Therefore, after model verification, calculation was performed with water vapor as the condensation vapor to predict the condensation scenario under a severe accident. This paper reports that the aerosol condensation model based on the moment method can be an auxiliary tool in an existing aerosol modeling program to estimate the particle size distribution change during a severe accident.