ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
March 2023
Nuclear Technology
Fusion Science and Technology
February 2023
Latest News
Savannah River facility prepped for NNSA project
Work has begun to prepare the Savannah River Plutonium Processing Facility (SRPPF) at the Department of Energy’s Savannah River Site in South Carolina for its future national security mission: the manufacturing of plutonium pits for the National Nuclear Security Administration.
Gordon M. Petersen, Steven E. Skutnik, James Ostrowski, Robert A. Joseph, III
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 208-224
Technical Paper | doi.org/10.1080/00295450.2017.1377509
Articles are hosted by Taylor and Francis Online.
A key challenge in fulfilling the U.S. federal government’s obligations under the Nuclear Waste Policy Act is in the transition of used nuclear fuel (UNF) storage away from at-reactor storage and to a consolidated interim storage facility (CISF). The default strategy (Standard Contract) for the U.S. Department of Energy is to use the oldest fuel first (OFF) allocation strategy, which would entail the federal government prioritizing UNF shipments based on fuel discharge date with the option to prioritize shutdown sites. This may not be the most cost-efficient model given the extensive amount of UNF already at reactor sites. Currently, there is no way to preemptively remove fuel from sites that may be close to shutdown or have a higher storage or potential storage cost. As wet storage pools at reactors continue to fill to capacity at operating reactors, the backlog of UNF shipments to the CISF places additional pressure on operators to expand at-reactor dry storage capacity, thus adding to total system costs.
An essential aspect of this transition is in developing appropriate analytical tools to evaluate the effect of factors such as fuel shipment prioritization, logistics, and associated expenses. Examples of this would include evaluating fuel offloading prioritization strategies (OFF versus shutdown sites first), strategies to minimize transfer of UNF to dry storage (i.e., through direct shipment from cooling pools to the CISF), etc.
By applying integer programming techniques, it is possible to make a rigorous analytical determination of a UNF removal allocation strategy that minimizes the total number of shutdown reactor years (SRYs). Our findings indicate that an optimal unloading strategy can result in a threefold reduction in total system SRYs compared with an OFF-based queue, for a systemwide savings of about $8 billion.