ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
Fusion Science and Technology
July 2023
Latest News
The Civil Nuclear Credit Program: An overview
Officially established on November 15, 2021, with the signing of the $1.2 trillion Infrastructure Investment and Jobs Act—aka the Bipartisan Infrastructure Law, or BIL—the Department of Energy’s Civil Nuclear Credit Program was designed to give owners/operators of commercial U.S. reactors the opportunity to apply for certification and competitively bid on credits to help support the continued operation of economically troubled units. Finally, the federal government, and not just certain farsighted state governments, would recognize nuclear energy for its important grid reliability and decarbonization attributes.
Gordon M. Petersen, Steven E. Skutnik, James Ostrowski, Robert A. Joseph, III
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 208-224
Technical Paper | doi.org/10.1080/00295450.2017.1377509
Articles are hosted by Taylor and Francis Online.
A key challenge in fulfilling the U.S. federal government’s obligations under the Nuclear Waste Policy Act is in the transition of used nuclear fuel (UNF) storage away from at-reactor storage and to a consolidated interim storage facility (CISF). The default strategy (Standard Contract) for the U.S. Department of Energy is to use the oldest fuel first (OFF) allocation strategy, which would entail the federal government prioritizing UNF shipments based on fuel discharge date with the option to prioritize shutdown sites. This may not be the most cost-efficient model given the extensive amount of UNF already at reactor sites. Currently, there is no way to preemptively remove fuel from sites that may be close to shutdown or have a higher storage or potential storage cost. As wet storage pools at reactors continue to fill to capacity at operating reactors, the backlog of UNF shipments to the CISF places additional pressure on operators to expand at-reactor dry storage capacity, thus adding to total system costs.
An essential aspect of this transition is in developing appropriate analytical tools to evaluate the effect of factors such as fuel shipment prioritization, logistics, and associated expenses. Examples of this would include evaluating fuel offloading prioritization strategies (OFF versus shutdown sites first), strategies to minimize transfer of UNF to dry storage (i.e., through direct shipment from cooling pools to the CISF), etc.
By applying integer programming techniques, it is possible to make a rigorous analytical determination of a UNF removal allocation strategy that minimizes the total number of shutdown reactor years (SRYs). Our findings indicate that an optimal unloading strategy can result in a threefold reduction in total system SRYs compared with an OFF-based queue, for a systemwide savings of about $8 billion.