ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
R. Ponciroli, Y. Wang, Z. Zhou, A. Botterud, J. Jenkins, R. B. Vilim, F. Ganda
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 189-207
Technical Paper | doi.org/10.1080/00295450.2017.1388668
Articles are hosted by Taylor and Francis Online.
This work explores the technical challenges associated with flexible operation for nuclear power plants (NPPs) and evaluates whether a flexible operational mode could improve the profitability of nuclear units by allowing nuclear plant owners/operators to reduce output when prices are low and instead shift capacity to the ancillary services markets. As compared to conventional power plants, NPP flexible operation capabilities are affected by additional physics-induced constraints. Among the most limiting constraints is the negative reactivity insertion following every reactor power drop due to the increased concentration of xenon, a strong neutron poison. In this work, a previously available power system operation model based on mixed-integer linear programming optimization was improved by implementing a dedicated representation of these physics-induced constraints for pressurized water reactors (PWRs). Because the xenon-related constraint involves nonlinear governing dynamics, a dedicated parametric approach was implemented. To evaluate the economic implications of flexible PWR operation, a case study using realistic power system data representative of the southwestern United States was analyzed. The results indicate that flexible operation can increase the revenue of nuclear units while at the same time reducing total electric system operating costs.