ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The DOE picks six HALEU deconverters. What have we learned?
The Department of Energy announced contracts yesterday for six companies to perform high-assay low-enriched uranium (HALEU) deconversion and to transform enriched uranium hexafluoride (UF6) to other chemical forms, including metal or oxide, for storage before it is fabricated into fuel for advanced reactors. It amounts to a first round of contracting. “These contracts will allow selected companies to bid on work for deconversion services,” according to the DOE’s announcement, “creating strong competition and allowing DOE to select the best fit for future work.”
R. C. Bauer
Nuclear Technology | Volume 200 | Number 2 | November 2017 | Pages 177-188
Technical Note | doi.org/10.1080/00295450.2017.1360715
Articles are hosted by Taylor and Francis Online.
Computational fluid dynamics (CFD) tools are becoming more widely used in thermal-hydraulic (T/H) and plant analyses due to advances in computational capability, data storage, and speed. However, to date, most CFD studies are ad hoc in nature with little emphasis on building links between and among CFD studies and CFD users. Thus, CFD codes have not yet been effectively leveraged as design tools within the T/H and nuclear applications communities due to lack of a comprehensive and rigorous approach to both verification and validation and uncertainty propagation. Consequentially, CFD is generally relegated to limited diagnostic use or as an adjunct to conventional lumped-parameter codes that often are based on limited testing and use conservative bounding factors applied to the needed design calculations.
Because significant technical progress and development of CFD have occurred over the last decade, the potential now exists to move the use of CFD into the mainstream of analysis tools to address design, operational, and regulatory issues for complex hydraulic systems. This potential can serve as a basis upon which to develop CFD for use in an integrated design-by-simulation (IDS) environment. The CFD methodology to provide this rigor is identified as predictive-CFD (P-CFD) in this technical note.
In the P-CFD/IDS methodology, synergy and consensus will be obtained through more rigorous validation of the underlying physics phenomena of each analysis objective through use of an extensive database of validation-level tests (VLTs) by many universities and laboratories. This approach logically suggests the creation of a national P-CFD database to contain these VLT data sets for general practitioner access. Thus, the underlying physics is a building block for multiple system objectives whose phenomena require those physics behaviors for the needed assessments. By using the P-CFD/IDS methodology, CFD methods can be made consistent, credible, and reproducible.
Extensive references have been included to provide the status of the underlying background that supports P-CFD/IDS development. The path outlined is fully practical but difficult. This technical note is written to show a framework by which a validated CFD study for a given hydraulic objective can be prepared and used for the analyses of complex hydraulic systems to support design conclusions.