ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Gallego and Risch submit ARC Act 2.0 in the Senate
Sens. Jim Risch (R., Idaho) and Ruben Gallego (D., Ariz.) reintroduced the Accelerating Reliable Capacity (ARC) Act in the Senate on February 10.
According to the Department of Energy, it could take up to 10 deployments for a reactor design to become a mature commercial reactor. Getting from the first-of-a-kind (FOAK) to full commercial deployment is challenging, and the risks of higher costs and longer deployment timelines for early nuclear projects create significant uncertainty for investors. The ARC Act is designed to reduce that early deployment risk.
Timothy Ironman, James Tulenko, Ghatu Subhash
Nuclear Technology | Volume 200 | Number 2 | November 2017 | Pages 144-158
Technical Paper | doi.org/10.1080/00295450.2017.1360714
Articles are hosted by Taylor and Francis Online.
The viability of spark plasma sintering (SPS) for fabrication of industrial-grade nuclear fuel pellets is explored by utilizing die designs for single- and multiple-pellet manufacturing. Traditional UO2 pellets were also manufactured by systematically varying processing temperature and pressure as needed for single- and multiple-pellet fabrication. The pellets were then qualified against commercial fuel specifications for density, shape, microstructure, and surface flaws. Pellets produced one at a time met all commercial specifications except for grain size. Pellets produced in batches of two, four, and eight pellets showed suboptimal density indicating that further changes to sintering conditions are warranted. Additionally, commonly used graphite tooling for pellet fabrication was shown to be ineffective in producing large numbers of fuel pellets, as the die and punches were shown to undergo severe wear in each run thus decreasing the reliability of the tooling for production of pellets as per the specification. Finally, additional discussion is provided for identifying the avenues for scale-up of SPS to meet the current commercial demand of 400 million pellets/year. These studies are viewed as first step toward assessing the ability of SPS technology to meet the quality specifications and quantity demands of nuclear fuel pellets.