ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
October 11, 1954: The founding of ANS
This year marks the 70th anniversary of the founding of the American Nuclear Society.
Plenty of sources incorrectly list our birthday, but the reality is that October 11, 1954, is the correct date for the establishment of ANS.
Adam Davis
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 66-79
Technical Paper | doi.org/10.1080/00295450.2017.1338883
Articles are hosted by Taylor and Francis Online.
This research investigates the effect of heterogeneity in slabs of aluminum, stainless steel, and polyethylene on photon and neutron transmission. This work considers whether novel, heterogeneous combinations of these materials provides improved photon shielding (for metal-infiltrated polyethylene) or neutron shielding (for polyethylene-infiltrated metal). Often, layers of a hydrogenous material such as polyethylene must be combined with layers of a higher-atomic-number material to provide shielding for both photons and neutrons. Several heterogeneous shield configurations are studied in which slabs of a base material are implanted with metal stud arrays ranging from 5 × 5 × 5 to 11 × 11 × 11 arrays. For metal slabs infiltrated with polyethylene studs, it is found that the performance of the heterogeneous slabs as neutron shields relative to the homogeneous material is source-energy dependent. This is a larger concern for polyethylene-infiltrated aluminum (PA) than it is for polyethylene-infiltrated stainless steel (PS) as introduction of these studs impairs PA’s performance as a photon shield (relative to solid aluminum) more than it does for PS relative to solid stainless steel. For polyethylene slabs infiltrated with aluminum or stainless steel studs, it is found that introduction of a sufficiently spaced array of metal studs with a moderate-to-high photon absorption cross section will improve the photon-shielding properties of the shield without impairing the neutron-shielding properties. Use of an insufficiently opaque material or insufficiently wide spacing of the studs will impair the photon-shielding properties, thus making it a less effective shield than homogeneous polyethylene alone. This is a larger concern for PA than it is for PS. This research demonstrates that heterogeneity is more beneficial for stainless steel shields than it is for heterogeneous aluminum shields relative to homogeneous slabs of those materials.