ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Adam Davis
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 66-79
Technical Paper | doi.org/10.1080/00295450.2017.1338883
Articles are hosted by Taylor and Francis Online.
This research investigates the effect of heterogeneity in slabs of aluminum, stainless steel, and polyethylene on photon and neutron transmission. This work considers whether novel, heterogeneous combinations of these materials provides improved photon shielding (for metal-infiltrated polyethylene) or neutron shielding (for polyethylene-infiltrated metal). Often, layers of a hydrogenous material such as polyethylene must be combined with layers of a higher-atomic-number material to provide shielding for both photons and neutrons. Several heterogeneous shield configurations are studied in which slabs of a base material are implanted with metal stud arrays ranging from 5 × 5 × 5 to 11 × 11 × 11 arrays. For metal slabs infiltrated with polyethylene studs, it is found that the performance of the heterogeneous slabs as neutron shields relative to the homogeneous material is source-energy dependent. This is a larger concern for polyethylene-infiltrated aluminum (PA) than it is for polyethylene-infiltrated stainless steel (PS) as introduction of these studs impairs PA’s performance as a photon shield (relative to solid aluminum) more than it does for PS relative to solid stainless steel. For polyethylene slabs infiltrated with aluminum or stainless steel studs, it is found that introduction of a sufficiently spaced array of metal studs with a moderate-to-high photon absorption cross section will improve the photon-shielding properties of the shield without impairing the neutron-shielding properties. Use of an insufficiently opaque material or insufficiently wide spacing of the studs will impair the photon-shielding properties, thus making it a less effective shield than homogeneous polyethylene alone. This is a larger concern for PA than it is for PS. This research demonstrates that heterogeneity is more beneficial for stainless steel shields than it is for heterogeneous aluminum shields relative to homogeneous slabs of those materials.