ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Chuan Li, Jian Zhang, Chao Fang
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 45-53
Technical Paper | doi.org/10.1080/00295450.2017.1348874
Articles are hosted by Taylor and Francis Online.
In this paper, the methodology of studying the chemical forms of important fission products (FPs) in the primary circuit of a pebble-bed modular high-temperature gas-cooled reactor (HTR-PM) is given, and the chemical forms of important FPs cesium (Cs), strontium (Sr), argentum (Ag), iodine (I), and corresponding amounts are calculated under the condition of equilibrium core of HTR-PM considering the O2 impurity in the helium coolant of the primary circuit. It is shown that for the Cs element, Cs2O2 and Cs2O may undergo a phase transformation between their nongaseous state and gaseous state, respectively, and for the Sr element, the conversion from SrO2 to SrO is obvious with the increase of temperature. In contrast, the reaction between Ag and O reacts thoroughly, and AgO is very stable under different temperature conditions. There is a turning point in the chemical reaction between Cs and I with the increase of temperature, which illustrates that there exists competition between the I-Cs reaction and the O-Cs reaction. These results provide clear chemical form information of the important FPs in the primary circuit, which is significant to understanding the chemical reaction behavior of radionuclides in HTR-PM.