ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Chuan Li, Jian Zhang, Chao Fang
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 45-53
Technical Paper | doi.org/10.1080/00295450.2017.1348874
Articles are hosted by Taylor and Francis Online.
In this paper, the methodology of studying the chemical forms of important fission products (FPs) in the primary circuit of a pebble-bed modular high-temperature gas-cooled reactor (HTR-PM) is given, and the chemical forms of important FPs cesium (Cs), strontium (Sr), argentum (Ag), iodine (I), and corresponding amounts are calculated under the condition of equilibrium core of HTR-PM considering the O2 impurity in the helium coolant of the primary circuit. It is shown that for the Cs element, Cs2O2 and Cs2O may undergo a phase transformation between their nongaseous state and gaseous state, respectively, and for the Sr element, the conversion from SrO2 to SrO is obvious with the increase of temperature. In contrast, the reaction between Ag and O reacts thoroughly, and AgO is very stable under different temperature conditions. There is a turning point in the chemical reaction between Cs and I with the increase of temperature, which illustrates that there exists competition between the I-Cs reaction and the O-Cs reaction. These results provide clear chemical form information of the important FPs in the primary circuit, which is significant to understanding the chemical reaction behavior of radionuclides in HTR-PM.