ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Chuan Li, Jian Zhang, Chao Fang
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 45-53
Technical Paper | doi.org/10.1080/00295450.2017.1348874
Articles are hosted by Taylor and Francis Online.
In this paper, the methodology of studying the chemical forms of important fission products (FPs) in the primary circuit of a pebble-bed modular high-temperature gas-cooled reactor (HTR-PM) is given, and the chemical forms of important FPs cesium (Cs), strontium (Sr), argentum (Ag), iodine (I), and corresponding amounts are calculated under the condition of equilibrium core of HTR-PM considering the O2 impurity in the helium coolant of the primary circuit. It is shown that for the Cs element, Cs2O2 and Cs2O may undergo a phase transformation between their nongaseous state and gaseous state, respectively, and for the Sr element, the conversion from SrO2 to SrO is obvious with the increase of temperature. In contrast, the reaction between Ag and O reacts thoroughly, and AgO is very stable under different temperature conditions. There is a turning point in the chemical reaction between Cs and I with the increase of temperature, which illustrates that there exists competition between the I-Cs reaction and the O-Cs reaction. These results provide clear chemical form information of the important FPs in the primary circuit, which is significant to understanding the chemical reaction behavior of radionuclides in HTR-PM.