ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Weston M. Stacey
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 15-26
Technical Paper | doi.org/10.1080/00295450.2017.1345585
Articles are hosted by Taylor and Francis Online.
The Georgia Tech concept of the Subcritical Advanced Burner Reactor (SABR) spent nuclear fuel (SNF) transmutation reactor and supporting analyses to date are summarized. SABR is based on the fast reactor physics and technology prototyped in Experimental Breeder Reactor-II (EBR-II) and proposed for the Integral Fast Reactor and the PRISM Reactor and on the tokamak fusion neutron source physics and technology that will be prototyped in ITER. Preliminary fuel cycle calculations indicate that subcritical operation would enable a proliferation-resistant fuel reprocessing cycle that would safely accommodate fuel with up to 100% TRU content and that introduction of SABRs in a 1-to-3 power ratio with light water reactors would reduce the required SNF high-level waste repository capacity (defined on the basis of decay heat released) by a factor of 10 to 100. Preliminary dynamic safety calculations indicate that SABRs could be shut down to the decay heat level by turning off the plasma heating power without core damage in loss of heat sink, loss of flow, and loss of power accidents, but that additional decay heat removal capability is needed in the case of total loss of primary or secondary system pumping power.