ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
J. L. King, H. Jo, R. Tirawat, K. Blomstrand, K. Sridharan
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 1-14
Technical Paper | doi.org/10.1080/00295450.2017.1353869
Articles are hosted by Taylor and Francis Online.
Thermal radiation will be an important mode of heat transfer in future high-temperature reactors and in off-normal high-temperature scenarios in present reactors. In this work, spectral directional emissivities of two reactor pressure vessel (RPV) candidate materials were measured at room temperature after exposure to high-temperature air. In the case of SA508 steel, significant increases in emissivity were observed due to oxidation. In the case of Grade 91 steel, only very small increases were observed under the tested conditions. Effects of roughness were also investigated. To study the effects of roughening, unexposed samples of SA508 and Grade 91 steel were roughened via one of either grinding or shot-peening before being measured. Significant increases were observed only in samples having roughness exceeding the roughness expected of RPV surfaces. While the emissivity increases for SA508 from oxidation were indeed significant, the measured emissivity coefficients were below that of values commonly used in heat transfer models. Based on the observed experimental data, recommendations for emissivity inputs for heat transfer simulations are provided.