ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Bill would require NRC reporting of nuclear medicine extravasations
Bipartisan legislation introduced into the U.S. House of Representatives earlier this month seeks to close a loophole that currently allows medical patients to be unintentionally exposed to radiation without reporting or disclosure. The Nuclear Medicine Clarification Act of 2025 (H.R. 2541) was introduced into the House by Reps. Don Davis (D., N.C.), Morgan Griffith (R., Va.), and Ben Cline (R., Va.), who said the legislation would improve care and ensure transparency for patients and simplify federal rules coming from the Nuclear Regulatory Commission.
Georgeta Radulescu, Kaushik Banerjee, Robert A. Lefebvre, L. Paul Miller, John M. Scaglione
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 299-309
Technical Paper | doi.org/10.1080/00295450.2017.1348800
Articles are hosted by Taylor and Francis Online.
The Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS) methodology to perform automated containment analyses for potential transportation packages based on canister loading map information is described, and its capability is illustrated with example results. The allowable leakage rate is calculated with the procedures provided in ANSI N14.5-2014 and NUREG/CR-6487, which were adapted for containment analysis of a transportation package containing fuel assemblies with different nuclear characteristics (e.g., initial enrichment, burnup, and cooling time) and clad integrity (intact or damaged). UNF-ST&DARDS applies different source term calculation methodologies for low-burnup fuel (LBF) (i.e., <45 GWd/tonne U) assemblies and high-burnup fuel (HBF) (i.e., ≥45 GWd/tonne U) assemblies. The LBF radionuclide activities are based on actual fuel assembly burnup, initial enrichment, and cooling time. Bounding radionuclide activities based on a fuel pellet burnup value of 65 GWd/tonne U and actual fuel assembly cooling time are used for HBF assemblies. The fraction of failed fuel rods and the release fractions for the contributors to releasable source terms recommended in NUREG-1617 are used in the containment analysis regardless of fuel assembly burnup. However, UNF-ST&DARDS supports different parameter values for LBF and HBF assemblies. The containment analysis methodology for as-loaded transportation packages is presented in detail, and the UNF-ST&DARDS containment analysis capability is illustrated with results for simulated transportation packages containing spent nuclear fuel canisters in dry storage at selected sites.