ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Georgeta Radulescu, Kaushik Banerjee, Robert A. Lefebvre, L. Paul Miller, John M. Scaglione
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 299-309
Technical Paper | doi.org/10.1080/00295450.2017.1348800
Articles are hosted by Taylor and Francis Online.
The Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS) methodology to perform automated containment analyses for potential transportation packages based on canister loading map information is described, and its capability is illustrated with example results. The allowable leakage rate is calculated with the procedures provided in ANSI N14.5-2014 and NUREG/CR-6487, which were adapted for containment analysis of a transportation package containing fuel assemblies with different nuclear characteristics (e.g., initial enrichment, burnup, and cooling time) and clad integrity (intact or damaged). UNF-ST&DARDS applies different source term calculation methodologies for low-burnup fuel (LBF) (i.e., <45 GWd/tonne U) assemblies and high-burnup fuel (HBF) (i.e., ≥45 GWd/tonne U) assemblies. The LBF radionuclide activities are based on actual fuel assembly burnup, initial enrichment, and cooling time. Bounding radionuclide activities based on a fuel pellet burnup value of 65 GWd/tonne U and actual fuel assembly cooling time are used for HBF assemblies. The fraction of failed fuel rods and the release fractions for the contributors to releasable source terms recommended in NUREG-1617 are used in the containment analysis regardless of fuel assembly burnup. However, UNF-ST&DARDS supports different parameter values for LBF and HBF assemblies. The containment analysis methodology for as-loaded transportation packages is presented in detail, and the UNF-ST&DARDS containment analysis capability is illustrated with results for simulated transportation packages containing spent nuclear fuel canisters in dry storage at selected sites.