ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Georgeta Radulescu, Kaushik Banerjee, Robert A. Lefebvre, L. Paul Miller, John M. Scaglione
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 299-309
Technical Paper | doi.org/10.1080/00295450.2017.1348800
Articles are hosted by Taylor and Francis Online.
The Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS) methodology to perform automated containment analyses for potential transportation packages based on canister loading map information is described, and its capability is illustrated with example results. The allowable leakage rate is calculated with the procedures provided in ANSI N14.5-2014 and NUREG/CR-6487, which were adapted for containment analysis of a transportation package containing fuel assemblies with different nuclear characteristics (e.g., initial enrichment, burnup, and cooling time) and clad integrity (intact or damaged). UNF-ST&DARDS applies different source term calculation methodologies for low-burnup fuel (LBF) (i.e., <45 GWd/tonne U) assemblies and high-burnup fuel (HBF) (i.e., ≥45 GWd/tonne U) assemblies. The LBF radionuclide activities are based on actual fuel assembly burnup, initial enrichment, and cooling time. Bounding radionuclide activities based on a fuel pellet burnup value of 65 GWd/tonne U and actual fuel assembly cooling time are used for HBF assemblies. The fraction of failed fuel rods and the release fractions for the contributors to releasable source terms recommended in NUREG-1617 are used in the containment analysis regardless of fuel assembly burnup. However, UNF-ST&DARDS supports different parameter values for LBF and HBF assemblies. The containment analysis methodology for as-loaded transportation packages is presented in detail, and the UNF-ST&DARDS containment analysis capability is illustrated with results for simulated transportation packages containing spent nuclear fuel canisters in dry storage at selected sites.