ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The DOE picks six HALEU deconverters. What have we learned?
The Department of Energy announced contracts yesterday for six companies to perform high-assay low-enriched uranium (HALEU) deconversion and to transform enriched uranium hexafluoride (UF6) to other chemical forms, including metal or oxide, for storage before it is fabricated into fuel for advanced reactors. It amounts to a first round of contracting. “These contracts will allow selected companies to bid on work for deconversion services,” according to the DOE’s announcement, “creating strong competition and allowing DOE to select the best fit for future work.”
Kevin R. Robb, Judith M. Cuta, L. Paul Miller
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 289-298
Technical Paper | doi.org/10.1080/00295450.2017.1346446
Articles are hosted by Taylor and Francis Online.
In the United States, approximately 2500 casks are loaded with commercial spent nuclear fuel (SNF) that has transitioned from wet storage (spent fuel pools) to dry storage. The number of loaded dry storage casks is increasing by approximately 200 each year. Over time, cask designs have evolved to enhance safety and to accommodate more fuel and higher heat loads. Also, higher burnup fuel is being transitioned into dry storage. The SNF is being stored in dry casks for longer times than specified in the original certification period. Several degradation mechanisms related to fuel assemblies and canisters are affected by temperature. For the cladding, temperature-dependent phenomena include creep and annealing, hydride reorientation and embrittlement, and the ductile-to-brittle transition. Temperature can also influence phenomena that affect the long-term integrity of the storage system, including deliquescence, corrosion, and stress-corrosion cracking. Therefore, accurate determination of the temperatures of various components is needed to evaluate potential safety-related issues during transportation after extended storage and to ensure SNF retrievability. The Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS) is being developed for the U.S. Department of Energy Office of Nuclear Energy to streamline analyses for the waste management system [Nucl. Technol., Vol. 195, p. 124 (2017)]. The thermal analysis capability within UNF-ST&DARDS and example results are discussed herein.