ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The D&D of SM-1A
With the recent mobilization at the site of the former SM-1A nuclear power plant at Fort Greely, Alaska, the Radiological Health Physics Regional Center of Expertise, located at the U.S. Army Corps of Engineers’ Baltimore District, began its work toward the decommissioning and dismantlement of its third nuclear power plant, this time located just 175 miles south of the Arctic Circle.
Georgeta Radulescu, Kaushik Banerjee, Robert A. Lefebvre, L. Paul Miller, John M. Scaglione
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 276-288
Technical Paper | doi.org/10.1080/00295450.2017.1307643
Articles are hosted by Taylor and Francis Online.
The Used Nuclear Fuel Storage, Transportation and Disposal Analysis Resource and Data System (UNF-ST&DARDS) is used to perform dose rate calculations for spent nuclear fuel (SNF) transportation packages based on the actual physical and nuclear characteristics (i.e., assembly design, burnup, initial enrichment, and cooling time) of the as-loaded SNF. Nuclear fuel data, transportation package model templates, and SNF canister loading map information residing within the tool facilitate automated generation of SCALE input files for radiation source term and dose rate calculations. Transportation package specific models developed for UNF-ST&DARDS dose rate analyses are described in detail. UNF-ST&DARDS dose rate analyses were performed for over 400 SNF canisters from 16 sites in their designated transportation casks. For simplicity, representative dose rate calculation results are presented as a function of time (i.e., selected calendar years between 2020 and 2100) for 73 SNF canisters in dry storage at four sites. For these canisters, the projected maximum dose rate values at 2 m from the lateral surfaces of the vehicle under normal conditions of transport (NCT) would vary between 1.9 and 11.5 mrem/h in 2020. Five SNF canisters will exceed the regulatory dose rate limit of 10 mrem/h at 2 m in 2020, and the analyzed SNF canisters will comply with regulatory dose rate limits by 2030. An analysis of the impact on the dose rate of fuel failure and reconfiguration during transportation indicated that the maximum dose rate for hypothetical accident conditions will be unaffected, and the NCT maximum dose rate at 2 m would have a maximum increase by a factor of 1.7 for a representative pressurized water reactor package and by a factor of 2.6 for a representative boiling water reactor package relative to intact fuel. Analysis of the actual heat loading and the dose rate at 2 m from the lateral surface of the vehicle for the five SNF canisters exceeding the NCT regulatory dose rate limit of 10 mrem/h in 2020 showed that the dose rate could be more limiting with respect to regulatory requirements than the heat loading; i.e., the canister transportability date may be evaluated based on the transportation package’s external dose rate.