ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
J. H. Lee, K. H. Oh, Y. H. Kang, S. C. Hwang, H. S. Lee, J. B. Shim, E. H. Kim, S. W. Park
Nuclear Technology | Volume 165 | Number 3 | March 2009 | Pages 370-379
Technical Paper | Reprocessing | doi.org/10.13182/NT09-A4108
Articles are hosted by Taylor and Francis Online.
Assessment of a high-throughput electrorefiner for a spent metallic fuel was carried out by using a commercial computational fluid dynamics code, CFX, and its performance was validated experimentally with a surrogate material. An electrorefiner equipped with a graphite cathode bundle was designed to continuously recover a high-purity uranium product without a noble metal contamination. The performance of the process for a decontamination of a noble metal in a uranium product was evaluated numerically as a function of the process parameters such as the rotation speed of the stirrer and the anode basket, and was validated experimentally. The distributions of the electric field and the electrodeposition behavior were also evaluated numerically, and an optimum electrode configuration was suggested.