ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Elia Merzari, Hisashi Ninokata, Sheng Wang, Emilio Baglietto
Nuclear Technology | Volume 165 | Number 3 | March 2009 | Pages 313-320
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-A4104
Articles are hosted by Taylor and Francis Online.
The present work considers simulation of free-surface vortices by means of computational fluid dynamics. The issue is relevant for the design of sodium-cooled fast breeder reactors (FBRs). In fact, the eventual entrainment of gas in the reactor core of an FBR may cause abnormal operation condition because of disturbed reactivity.The foci of this work are turbulence modeling and free-surface modeling. Two different approaches are tested in the benchmark case of Moriya et al.: single-phase simulation (through large eddy simulation and detached eddy simulation methodology) and two-phase simulation (combining a volume-of-fluid method with turbulence modeling). Results are in excellent agreement with the experiment for the circumferential velocity in both cases if the grid adopted is sufficiently fine near the vortex core. Through additional grid refinement it is possible to correctly reproduce the shape of the vortex dimple. The code employed is STAR-CD 4.0.