ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Elia Merzari, Hisashi Ninokata, Sheng Wang, Emilio Baglietto
Nuclear Technology | Volume 165 | Number 3 | March 2009 | Pages 313-320
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-A4104
Articles are hosted by Taylor and Francis Online.
The present work considers simulation of free-surface vortices by means of computational fluid dynamics. The issue is relevant for the design of sodium-cooled fast breeder reactors (FBRs). In fact, the eventual entrainment of gas in the reactor core of an FBR may cause abnormal operation condition because of disturbed reactivity.The foci of this work are turbulence modeling and free-surface modeling. Two different approaches are tested in the benchmark case of Moriya et al.: single-phase simulation (through large eddy simulation and detached eddy simulation methodology) and two-phase simulation (combining a volume-of-fluid method with turbulence modeling). Results are in excellent agreement with the experiment for the circumferential velocity in both cases if the grid adopted is sufficiently fine near the vortex core. Through additional grid refinement it is possible to correctly reproduce the shape of the vortex dimple. The code employed is STAR-CD 4.0.