ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
Bringing 2022 ANS Standards Committee successes into the new year
By all accounts, 2022 brought many successes for the American Nuclear Society’s Standards Committee, including the initiation of five projects, reaffirmation of 11 current standards, and publication of seven new or revised standards. The entire collection of ANS current standards has been approved or reaffirmed (reapproved without change) by the American National Standards Institute (ANSI) within the past five years, keeping ANS in 100 percent compliance with ANSI’s requirement on maintaining current American National Standards. Also, the ANS standards program was reaccredited by ANSI on August 19, 2022, with the approval of a revised set of rules and procedures. ANS’s new rules and procedures take advantage of the opportunity to develop standards-related technical reports that may be registered with ANSI.
Marie Y. Arrieta, Dennis D. Keiser, Jr., Delia Perez-Nunez, Sean M. McDeavitt
Nuclear Technology | Volume 199 | Number 2 | August 2017 | Pages 219-226
Technical Paper | doi.org/10.1080/00295450.2017.1336028
Articles are hosted by Taylor and Francis Online.
A fluidized bed–chemical vapor deposition (FB-CVD) process was designed and established in a two-part experiment to produce zirconium nitride barrier coatings on uranium-molybdenum particles for a reduced enrichment dispersion fuel concept. A hot-wall, inverted fluidized bed reaction vessel was developed for this process, and coatings were produced from thermal decomposition of the metallo-organic precursor tetrakis(dimethylamino)zirconium (TDMAZ) in high-purity argon gas. Experiments were executed at atmospheric pressure and low substrate temperatures (i.e., 500 to 550 K). Deposited coatings were characterized using scanning electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy. Successful depositions were produced on 1 mm diameter tungsten wires and fluidized ZrO2-SiO2 microspheres (185 to 250 µm diameter) with coating thicknesses ranging from 0.5 to 30 μm. The coating deposition rate was nominally estimated to be 0.04 ± 0.02 µm/h. The ZrN coating adhered to the microspheres, but there was a significant oxygen and possible carbon contamination.