ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
NRC seeks presentations for virtual workshop on advanced reactor SNF
The Nuclear Regulatory Commission is asking for presentation proposals for a virtual workshop on the storage and transportation of TRISO and metal spent nuclear fuels for advanced reactor designs now under development.
Marie Y. Arrieta, Dennis D. Keiser, Jr., Delia Perez-Nunez, Sean M. McDeavitt
Nuclear Technology | Volume 199 | Number 2 | August 2017 | Pages 219-226
Technical Paper | doi.org/10.1080/00295450.2017.1336028
Articles are hosted by Taylor and Francis Online.
A fluidized bed–chemical vapor deposition (FB-CVD) process was designed and established in a two-part experiment to produce zirconium nitride barrier coatings on uranium-molybdenum particles for a reduced enrichment dispersion fuel concept. A hot-wall, inverted fluidized bed reaction vessel was developed for this process, and coatings were produced from thermal decomposition of the metallo-organic precursor tetrakis(dimethylamino)zirconium (TDMAZ) in high-purity argon gas. Experiments were executed at atmospheric pressure and low substrate temperatures (i.e., 500 to 550 K). Deposited coatings were characterized using scanning electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy. Successful depositions were produced on 1 mm diameter tungsten wires and fluidized ZrO2-SiO2 microspheres (185 to 250 µm diameter) with coating thicknesses ranging from 0.5 to 30 μm. The coating deposition rate was nominally estimated to be 0.04 ± 0.02 µm/h. The ZrN coating adhered to the microspheres, but there was a significant oxygen and possible carbon contamination.