ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The D&D of SM-1A
With the recent mobilization at the site of the former SM-1A nuclear power plant at Fort Greely, Alaska, the Radiological Health Physics Regional Center of Expertise, located at the U.S. Army Corps of Engineers’ Baltimore District, began its work toward the decommissioning and dismantlement of its third nuclear power plant, this time located just 175 miles south of the Arctic Circle.
Simon A. Clément, Philippe M. Bardet
Nuclear Technology | Volume 199 | Number 2 | August 2017 | Pages 151-173
Technical Paper | doi.org/10.1080/00295450.2017.1327254
Articles are hosted by Taylor and Francis Online.
Because of the complexity of the flow within light water reactor (LWR) cores, numerous small-scale phenomena locally influence heat transfer and critical heat flux (CHF). They include development of viscous and thermal boundary layers, interchannel mixing, spacer grid mixing, rod vibrations, or confinement effects such as the proximity of the walls or the influence of the gap between adjacent fuel bundles. LWR prototypical conditions are particularly harsh environments and limit measurements to quantities such as pointwise pressure drop and temperature, the latter resulting in global heat transfer and CHF correlations. The local phenomena mentioned above are embedded in these correlations, leading to inherent empiricism (and therefore conservatism). Validated computational fluid dynamics (CFD) codes and models can predict these phenomena, thus providing modelization tools of greater accuracy. However, major requirements for validation campaigns include the matching of validation and application domains and the deployment of mature and high-resolution diagnostics. For the latter, many are available for single-phase flows due to their predominance in several research fields. Furthermore, in the lower part of LWR cores, flow is single phase, and only this regime is considered in this paper. To circumvent the challenges of deploying diagnostics in LWR conditions, surrogate fluids are commonly used, enabling the measurement of velocity, temperature, pressure, or wall shear stress. A large number of single-phase tests with resolution adequate to validate CFD models have been conducted with air, steam, and water at moderate temperature and pressure. However, to date, with these fluids, the application domain defined by the Reynolds and Prandtl numbers has not been reached.
Four surrogate gases are proposed to match application and validation domains while allowing the deployment of a broad range of diagnostics: pressurized sulfur hexafluoride, xenon, cryogenic nitrogen, and highly pressurized air. By controlling their operating temperature and pressure, they allow matching prototypical Reynolds and Prandtl numbers while preserving the length scale, velocity scale, and timescale. This is achieved by reproducing the kinematic viscosity and thermal diffusivity of several nuclear reactor coolants. Furthermore, for single-phase conjugate heat transfer, a complete scaling analysis is performed for one pressurized water reactor fuel rod within a bundle under normal operating conditions. Electrically heated rods made of magnesium oxide and Zircaloy, combined with the proposed surrogate fluids, provide a close matching of conjugate heat transfer. Additionally, the use of these surrogates offers a significant decrease of the heating and pumping powers. Single-phase heat transfer separate-effect tests can then be performed for the first time in a laboratory setup with one, or several, full-size fuel bundles at prototypical conditions, while allowing the deployment of a large range of diagnostics. Finally, existing test facilities for hydraulics and thermal hydraulics of prototypical fuel bundles can be utilized with minor retrofits, further facilitating test implementation.