Because of their good behavior under irradiation, fuel elements based on U3Si2 particles dispersed in an Al matrix have been used to convert to low-enriched uranium in a large number of research reactors. This behavior is extended to any compound grown by interdiffusion between silicide and Al during the fabrication process.

In this work, two plates fabricated with U3Si2 particles dispersed in an Al matrix were analyzed by optical and scanning electron microscopies, wave length dispersive microanalysis, and X-ray diffraction after the fabrication process. The results show that U(Al,Si)3 together with another phase with the same crystalline structure as U3Si2 but modified cell volume was formed.

A detailed analysis of fuel elements based on U3Si2 is considered very useful to be applied when going into greater depth in the frame of a U(Mo) qualification program.