ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Zeyun Wu, Robert E. Williams, J. Michael Rowe, Thomas H. Newton, Sean O’Kelly
Nuclear Technology | Volume 199 | Number 1 | July 2017 | Pages 67-82
Technical Paper | doi.org/10.1080/00295450.2017.1335146
Articles are hosted by Taylor and Francis Online.
This paper presents preliminary neutronics and thermal hydraulics safety analysis results for a low-enriched uranium (LEU) fueled research reactor concept being studied at the National Institute of Standards and Technology (NIST). The main goal of this research reactor is to provide advanced sources for neutron scattering experiments with a particular emphasis given to high intensity cold neutron sources (CNSs). A tank-in-pool type reactor with an innovative horizontally split compact core was developed in order to maximize the yield of the thermal flux trap in the reflector area. The reactor concept considered a 20 MW thermal power and a 30-day operating cycle. For non-proliferation purposes, a LEU fuel (U3Si2-Al) with 19.75 wt% enrichment was used. The core performance characteristics of an equilibrium cycle with several representative burnup states—including startup and end of cycle—were obtained using the Monte Carlo–based code MCNP6. The estimated maximum perturbed thermal flux of the core is ~5.0 × 1014 n/cm2-s. The calculated brightness of the CNS demonstrates an average gain factor of ~4 compared to the current source operated at the existing NIST reactor. Sufficient reactivity control worth and shutdown margins were provided by hafnium control elements. Reactivity coefficients were evaluated to ensure negative feedback. Thermal hydraulics safety studies of the reactor were performed using the multi-channel safety analysis code PARET. Steady-state analysis shows that the peak cladding temperature and minimum critical heat flux ratio are less than design limits with sufficient safety margins. Detailed transient analyses for a couple of hypothetical design-basis accidents show that no fuel damage or cladding failure would occur with the protection of reactor scrams. All these study results suggest this new research reactor concept offers a demonstrable potential to greatly expand the cold neutron capability with a 20 MW power and certified LEU fuels.