ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Peiwei Sun, Ji Feng, Xianbao Yuan, Liang Zhao, Furong Liu
Nuclear Technology | Volume 199 | Number 1 | July 2017 | Pages 35-46
Technical Paper | doi.org/10.1080/00295450.2017.1322396
Articles are hosted by Taylor and Francis Online.
The Canadian SuperCritical Water-cooled Reactor (SCWR) is a once-through pressure tube–type SCWR under development in Canada. It is a multivariable system with strong cross coupling and a high degree of nonlinearity. The outputs are sensitive to disturbances, and the variations in the thermal parameters should be limited to avoid thermal stress to its components. Therefore, designing an adequate control system is challenging. In this paper, robust multivariable feedback control and feedforward control are proposed to design the control system of the Canadian SCWR. Three uncertainty sources are considered: unmodeled uncertainty, linearization uncertainty, and model reduction uncertainty. These uncertainties are evaluated taking into account all aspects affecting the linear dynamic model used in the robust controller synthesis, and the uncertainty bounds are determined to cover the uncertainties. The robust feedback controller is synthesized using the μ-synthesis approach. The feedforward control is added to the robust feedback control to further improve the control performance. It is obtained through disturbance compensation features for a feedforward controller. The control performance of the hybrid control system is evaluated based on the nonlinear simulation by introducing different setpoint changes. The designed control system can stabilize the Canadian SCWR, and the control performance is satisfactory.