ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Roberto Ponciroli, Stefano Passerini, Richard B. Vilim
Nuclear Technology | Volume 199 | Number 1 | July 2017 | Pages 16-34
Technical Paper | doi.org/10.1080/00295450.2017.1326783
Articles are hosted by Taylor and Francis Online.
Advanced reactors are often claimed to be passively safe against unprotected upset events. In common practice, these events are not considered in the context of the plant control system, i.e., the reactor is subjected to classes of unprotected upset events while the normally programmed response of the control system is assumed not to be present. However, this approach constitutes an oversimplification since, depending on the upset involving the control system, an actuator does not necessarily go in the same direction as needed for safety. In this work, dynamic simulations are performed to assess the degree to which the inherent self-regulating plant response is safe from active control system override. The simulations are meant to characterize the resilience of the plant to unprotected initiators. The initiators were represented and modeled as an actuator going to a hard limit. Consideration of failure is further limited to individual controllers as there is no cross-connect of signals between these controllers. The potential for passive safety override by the control system is then relegated to the single-input single-output controllers. The results show that when the plant control system is designed by taking into account and quantifying the impact of the plant control system on accidental scenarios there is very limited opportunity for the preprogrammed response of the control system to override passive safety protection in the event of an unprotected initiator.