ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Yan Wang, Zhijian Zhang, Anqi Xu, Huazhi Zhang
Nuclear Technology | Volume 198 | Number 3 | June 2017 | Pages 327-341
Technical Paper | doi.org/10.1080/00295450.2017.1297174
Articles are hosted by Taylor and Francis Online.
Quantitative risk values for nuclear power plants (NPPs) can be obtained by conducting a probabilistic safety assessment (PSA). However, people cannot judge the risk level without comparing the risk values from PSA with the standards of acceptable risk in society. Acceptable risk standards are affected by many factors, and those factors are preferentially considered in specified applications. There are many methods used to establish acceptable risk, and a comparative method is easily understood and accepted by the public. In the United States, both qualitative safety goals and quantitative health objectives (QHOs) for the current generation of light water reactors are established by a comparative method and are described in the Safety Goals Policy Statement published by the U.S. Nuclear Regulatory Commission. The evaluations of Level 1 PSA or Level 2 PSA are enough for most regulatory decisions and engineering practices.
In order to use PSA as a useful tool for regulation, establishing surrogate safety goals based on QHOs is necessary. But, there is no clear derivation process. First, this paper introduces the process of how to derive QHOs from qualitative safety goals and a model of quantitative health risk. Then, models using core damage frequency (CDF) and large early release frequency (LERF) based on the QHOs are introduced. The situations of nuclear power for each country—the number of plants, the types of reactors, the weather conditions, the population distribution, and the off-site emergency response plan—are different for each country. This paper considers two representative situations. The first situation is that a society has only a single NPP. The maximum consequence method is used to determine the surrogate safety goals for this situation. The second situation is that a society has multiple types of NPPs and the off-site environments of the plants are different from each other. The statistical tolerance intervals method is used to determine the surrogate safety goals for this situation. Data of individual early fatality and cancer fatality risk in China from 2004 to 2013 are collected and analyzed, and then, Chinese, U.S., Korean, and Japanese QHOs are compared. Chinese QHOs and some data from the reference are used to establish surrogate safety goals for the two situations, which are compared with existing surrogate safety goals CDF = 1E-04 per reactor and LERF = 1E-05/reactor-year.