ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Jun Hwan Kim, Byoung Kwon Choi, Yong Hwan Jeong, Seung Jin Oh
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 241-248
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT09-A4089
Articles are hosted by Taylor and Francis Online.
Studies were conducted to investigate the effect of the intermediate cooling process on the thermal shock behavior of Zircaloy-4 fuel cladding under a simulated loss-of-coolant accident condition and to analyze the related mechanical and microstructural properties. The Zircaloy-4 specimen was oxidized at the desired temperature and time, then various cooling processes were applied such as the direct water quench, the intermediate cooling at 700°C for 200 and 2000 s, and the successive cooling from 950 to 700°C. The results showed that the direct water quenching without any intermediate cooling process reduced the cladding ductility in that it reduced the minimum equivalent cladding reacted from 20 to near 17%. Ring compression ductility decreased, and the minimum thickness of the prior-beta layer thickness that causes brittle failure increased from 0.3 to 0.4 mm in the case of the direct water quench condition. As the cooling rate increased, the size of the plate inside the prior-beta phase decreased so that it induced an increase in the residual dislocation density to result in a decrease of the cladding ductility. Additional oxidation effect during a slow cooling below 950°C had little influence on the cladding behavior.