ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Hai-Di Liu, Fu-Zhi Li, Xuan Zhao, Gui-Chun Yun
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 200-208
Technical Paper | Decontamination/decommissioning | doi.org/10.13182/NT09-A4086
Articles are hosted by Taylor and Francis Online.
We developed a new method for the preparing of a potassium cobalt hexacyanoferrate (PCH)/SiO2 composite as a granulated inorganic adsorbent to remove Cs+ from the radioactive waste solution. The process comprised two steps: The first step was preparing nanoscaled PCH particles, and the second step was stabilizing the PCH particles into the in situ-generated porous silica with aqueous silica sol used as SiO2 source. Granulated composite particles with good rigidity could be successfully prepared with this method. At the same time, the PCH content in the composite could reach 70 wt%, which is one of the highest PCH loads that have been reported.The PCH particles and composite were analyzed with X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive analysis of X-rays, and Brunauer-Emmett-Teller methods. It was indicated by the results that the PCH particles and porous silica were mixed with each other homogeneously in the composite. Adsorption behaviors of the composite upon Cs+ under competition of coexisting ions (H+, Na+, and K+) were studied in batch experiments to determine the distribution coefficient (Kd). The as-fabricated composite exhibited high Cs adsorbing capacity (0.335 meq Cs/g composite) and good Cs+ selectivity from the mixture of competing ions (H+, Na+, and K+). All these characteristics made it a promising material for treating radioactive wastewater.