ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hai-Di Liu, Fu-Zhi Li, Xuan Zhao, Gui-Chun Yun
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 200-208
Technical Paper | Decontamination/decommissioning | doi.org/10.13182/NT09-A4086
Articles are hosted by Taylor and Francis Online.
We developed a new method for the preparing of a potassium cobalt hexacyanoferrate (PCH)/SiO2 composite as a granulated inorganic adsorbent to remove Cs+ from the radioactive waste solution. The process comprised two steps: The first step was preparing nanoscaled PCH particles, and the second step was stabilizing the PCH particles into the in situ-generated porous silica with aqueous silica sol used as SiO2 source. Granulated composite particles with good rigidity could be successfully prepared with this method. At the same time, the PCH content in the composite could reach 70 wt%, which is one of the highest PCH loads that have been reported.The PCH particles and composite were analyzed with X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive analysis of X-rays, and Brunauer-Emmett-Teller methods. It was indicated by the results that the PCH particles and porous silica were mixed with each other homogeneously in the composite. Adsorption behaviors of the composite upon Cs+ under competition of coexisting ions (H+, Na+, and K+) were studied in batch experiments to determine the distribution coefficient (Kd). The as-fabricated composite exhibited high Cs adsorbing capacity (0.335 meq Cs/g composite) and good Cs+ selectivity from the mixture of competing ions (H+, Na+, and K+). All these characteristics made it a promising material for treating radioactive wastewater.