ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Shelly X. Li, S. D. Herrmann, K. M. Goff, M. F. Simpson, R. W. Benedict
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 190-199
Technical Paper | Reprocessing | doi.org/10.13182/NT09-A4085
Articles are hosted by Taylor and Francis Online.
This article summarizes the observations and analytical results from a series of bench-scale liquid cadmium cathode experiments that recovered transuranic elements together with uranium from a molten electrolyte laden with real fission products. Variable parameters such as the ratio of Pu3+/U3+ in the electrolyte, liquid cadmium cathode voltage, and feed materials were tested in the liquid cadmium cathode experiments. Actinide recovery efficiency and Pu/U ratio in the liquid cadmium cathode product under variable conditions are reported in this paper. Separation factors for actinides and rare earth elements in the molten LiCl-KCl/cadmium system are also presented.