ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Shelly X. Li, S. D. Herrmann, K. M. Goff, M. F. Simpson, R. W. Benedict
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 190-199
Technical Paper | Reprocessing | doi.org/10.13182/NT09-A4085
Articles are hosted by Taylor and Francis Online.
This article summarizes the observations and analytical results from a series of bench-scale liquid cadmium cathode experiments that recovered transuranic elements together with uranium from a molten electrolyte laden with real fission products. Variable parameters such as the ratio of Pu3+/U3+ in the electrolyte, liquid cadmium cathode voltage, and feed materials were tested in the liquid cadmium cathode experiments. Actinide recovery efficiency and Pu/U ratio in the liquid cadmium cathode product under variable conditions are reported in this paper. Separation factors for actinides and rare earth elements in the molten LiCl-KCl/cadmium system are also presented.