ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Bin Liu, Xuefeng Lv, Shiliang Zhou, Ying Wu
Nuclear Technology | Volume 165 | Number 1 | January 2009 | Pages 124-131
Technical Note | Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A4065
Articles are hosted by Taylor and Francis Online.
Elemental analysis of neutron-induced gamma-ray spectra is a significant technology in the detection of chemical agents, explosives, etc. The hard part of this problem is the very complicated and uncertain background signals of the gamma-ray spectra. Also, the background signals are always changing as the searched objects change, thus further complicating the gamma-ray spectra analysis process. We can define a typical or average background spectrum if the variation of background spectrum is not too large, then we use this background spectrum to identify a gamma-ray signal.We tested both the direct summation approach and the Gaussian fitting approach in our computer algorithms. We found these two different approaches have individual advantages and disadvantages when they are applied in calculations of the signal significance level. In the end, we combined the direct summation approach with the Gaussian fitting approach in our computer algorithms in the actual calculations of the signal significance level.Based on our previous preliminary MCNP simulations results, we used phosphorus powder to simulate the chemical agent sarin and used our automated computer algorithms to calculate the single-line and multiple-line signal significance levels. Presented in this paper are some results in which we used our experimental data to test our average background spectrum and our computer algorithms. Our calculated results show the average background spectra that we defined are appropriate for the elemental analysis in searching for the chemical agent, and our computer algorithms, in which we combined the direct summation approach with the Gaussian fitting approach, function well. From a multiple-line analysis, our calculated results show that in the real application of this neutron-induced gamma-ray detection technique the detection time can be reduced to 15 s or less for detecting small quantities of chemical agents.